LA-LDA: A Limited Attention Topic Model for Social Recommendation

نویسندگان

  • Jeon-Hyung Kang
  • Kristina Lerman
  • Lise Getoor
چکیده

Social media users have finite attention which limits the number of incoming messages from friends they can process. Moreover, they pay more attention to opinions and recommendations of some friends more than others. In this paper, we propose LA-LDA, a latent topic model which incorporates limited, non-uniformly divided attention in the diffusion process by which opinions and information spread on the social network. We show that our proposed model is able to learn more accurate user models from users’ social network and item adoption behavior than models which do not take limited attention into account. We analyze voting on news items on the social news aggregator Digg and show that our proposed model is better able to predict held out votes than alternative models. Our study demonstrates that psycho-socially motivated models have better ability to describe and predict observed behavior than models which only consider topics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Point-of-Interest Recommendation in Location Based Social Networks with Topic and Location Awareness

The wide spread use of location based social networks (LBSNs) has enabled the opportunities for better location based services through Point-of-Interest (POI) recommendation. Indeed, the problem of POI recommendation is to provide personalized recommendations of places of interest. Unlike traditional recommendation tasks, POI recommendation is personalized, locationaware, and context depended. ...

متن کامل

یک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجره‌های هم‌پوشان

A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...

متن کامل

Online Courses Recommendation based on LDA

In this paper we propose a course recommendation system based on historical grades of students in college. Our model will be able to recommend available courses in sites such as: Coursera, Udacity, Edx, etc. To do so, probabilistic topic models are used as follows. On one hand, Latent Dirichlet Allocation (LDA) topic model infers topics from content given in a college course syllabus. On the ot...

متن کامل

Question Recommendation Mechanism under Q&A Community based on LDA Model

Aiming at the questions not answered timely under Q&A community, a kind of questions recommendation method based on LDA (Latent Dirichlet Allocation) topic model is proposed, which fully utilizes personalized information of users under Q&A community. The interests distributions of users are expressed through using LDA model and according to the interests distributions of users, questions recomm...

متن کامل

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013